Historical Geology GEOL 1050

Major competencies: Students will demonstrate proficiency on a broad range of topics relative to historical geology. These general proficiencies include the following:

(1.) Recognition of individual scholars and ideas that have helped form the field of historical geology; (2.) Integration of the methodologies and techniques of historical geology to explain the geological history of the earth; (3.) Application of principles of the geologic time scale in establishing the order of past events; (4.) Demonstration of the central importance of rocks, particularly sedimentary rocks, in reconstructing past geologic events, processes, and environments; (5.) utilization of an often inseparable relationship between geologic events and life in order to explain the development of life on the planet; (6.) Application of concepts in plate tectonics to past geologic events, such as mountain building, and to the distribution and development of life on the planet; (7.) Application of the "tools" of historical geology, including geologic maps, compasses, and the geologic time scale, to interpretation of past geologic occurrences; (8.) Ordering of fossils by accepted standards of palentology.

Teaching methods used: The teaching strategies used in any given semester may vary from instructor to instructor. The strategies will include, but not be limited to, lecture, audio visual/computer supplements, Power Point discussions, small-group problem solving, and field trips. Specific emphasis will be given to computer enhanced technologies, "hands-on" analysis of rocks, fossils, geologic maps, stratigraphic maps, and paleogeographic maps, and practice with compasses and other equipment in recording accurate field notes.

Administrative instructions: Attendance policies will vary by instructor. However, in all cases laboratory experience will be viewed as an integral part of the course. As such, lab attendance is mandatory and unapproved absences of more than 25% of lab meetings will result in a failing grade for the complete course. Regular class (lecture) attendance policy is left to the individual instructor.

Evaluation plan: The "target" grading percentages are shown below. However, these may vary according to the individual instructor.

<u>Instrument</u>	% of Final Grade
(1) Three written exams	65%
(2) Lab work with attendance	25%
(3) Lab exam or 2-4 quizzes	10%
(4) Extra credit projects at discretion of instructor	0-25%
(5) Subjective evaluation of participation in class	0-25%
activities/discussions	

Major Course Competencies:

I. Demonstrate plate tectonics as a unifying theme in physical geology.

	Related Skills	Evaluation Method(s)	Teaching Strategy
1.	Describe the dynamics of plate processes,	Exam, class discussion	Lecture, CD-ROM,
	origins, and activities.		transparencies, video, Power
			Point
2.	Describe resultant geologic features orogenesis.	Exam, class discussion	Lecture, Power Point
3.	Relate plate movements to historical events and to major developments of	Exam, class discussion	Lecture, film, Power Point
	life on earth.		

II. Demonstrate an ability to apply the general methodologies and techniques of historical geology in problem analysis.

	Related Skills	Evaluation Method(s)	Teaching Strategy
1.	Identify ideas, developments, and people	Exam, class discussion	Lecture, assigned reading,
	of significance to the field of historical		Power Point
	geology.		
2.	Demonstrate the historical significance of	Exam, class discussion,	Lecture, films, assigned
	rocks, especially sedimentary rocks, in	lab exercises	reading, Power Point
	reconstructing past geologic events and		
	environments.		
3.	Use the physical properties of sedimen-	Exam, class discussion,	Lecture, field trip, assigned
	tary rock as indicators of past geologic	lab exercises	reading, Power Point
	events and environments.		

III. Apply the principles of physical stratigraphy to analysis of problems and historical reconstruction.

	Related Skills	Evaluation Method(s)	Teaching Strategy
1.	Demonstrate a knowledge of rock	Exam, lab exercises,	Lecture, lab manual, assigned
	stratigraphic units and terminology.	class discussion	reading, Power Point
2.	Demonstrate a knowledge of various	Exam, lab exercises,	Lecture, videos, transparencies,
	sedimentary environments.	class discussion	Power Point
3.	Construct lithofacies and paleogeo	Lab exercises, class	Lab exercises, assigned reading
	graphic maps for lithostratigraphic	discussion	Power Point
	analysis		
4.	Demonstrate an ability to use the	Exams, lab exercises	Lab exercises, assigned reading
	geologic concepts of transgression,		Power Point
	regression, and facies.		
5.	Demonstrate an ability to correlate and	Exams, lab exercises,	Lab exercises, lecture,
	interpret stratigraphic sequences.	field problems	transparencies, Power Point

IV. Apply the principles of paleontology to an analysis and reconstruction of the history of life on earth.

	Related Skills	Evaluation Method(s)	Teaching Strategy
1.	Demonstrate an ability to identify	Exam, lab exercises	Class discussion, lab exercises,
	different fossil groups and individual		assigned reading
	fossils.		
2.	Describe strengths and weaknesses of	Exam	Class discussion, lecture,
	the fossil record as an accurate portrayal		assigned reading, Power Point
	of life on the earth.		
3.	Describe the different types of fossils	Exam, lab exercises	Lecture, class discussion, lab
	and means of preservation.		Exercises, Power Point
4.	Demonstrate how fossils may be used as	Exam, lab exercises	Lecture, class discussion, lab
	indicators of the environment.		Exercises, Power Point
5.	Apply major concepts, ecology and	Exam, lab exercises	Lecture, class discussion, video
	paleoecology to paleontology.		lab exercises, Power Point
6.	Demonstrate the establishment and	Exam, lab exercises	Lecture, class discussion, lab
	application of "index fossils."		exercises
7.	Demonstrate the use of fossil	Exam, lab exercises	Class discussion, assigned
	assemblages in age determination.		reading, lecture, Power Point
8.	Demonstrate an ability to classify fossils	Lab exercises	Lecture, lab exercises
	according to the internationally accepted		
	Linnean classification system.		
9.	Relate the development of life on earth	Exam	Lecture. assigned reading,
	to macro-scale geologic events.		videos, Power Point
10.	Apply modern concepts of evolution to	Class discussion, exam,	Lecture, assigned reading,
	an interpretation of the record of life on	lab exercise	class discussion, Power Point
	earth.		

V. Demonstrate an understanding of geologic time and the ordering of geologic events.

	Related Skills	Evaluation Method(s)	Teaching Strategy
1.	Apply the time-related principles of	Lab exercises, class	Lab exercises, assigned reading
	uniformitarianism, original horizontality, superposition, lateral continuity, crosscutting relations, components, and	discussion, exam	videos, Power Point
	fossil succession to problems of ordering		
	past geologic events.		
2.	Demonstrate a knowledge of uncon-	Lab exercises, exam	Lab exercises, assigned reading
	formities as applied to reconstructing past geologic events.		lecture, Power Point
3.	Apply concepts of radiometric dating	Lab exercises, exam	Lecture, assigned reading,
	to analysis of sequences of geologic events.		lab exercises, Power Point
4.	Demonstrate an understanding of the	Exam, lab exercises,	Lecture, assigned reading,
	principles, terminology, and applications of the geologic time scale.	class problem-solving	lab exercises, video, Power Point

VI. Apply the "tools" of historical geology to analyses of geologic problems.

	Related Skills	Evaluation Method(s)	Teaching Strategy
1.	Demonstrate the use of geologic maps.	Lab exercises	Lab exercises, class discussion, assigned reading, Power Point
2.	Demonstrate the use of a compass and Abney level.	Field exercise	Field demonstration/exercise
3.	Demonstrate the safe and proper use of a geologic pick / hammer in rock and fossil collecting.	Field exercise	Field exercise

VII. Demonstrate a knowledge of the earth as related to our solar system and the universe.

	Related Skills	Evaluation Method(s)	Teaching Strategy
1.	Describe various theories regarding	Exam, class discussion	Lecture, assigned reading,
	formation and function of the universe,		Power Point
	such as "red shift" and "big bang."		
2.	Describe current theories regarding the	Exam, class discussion	Lecture, assigned reading
	origin of the solar system, such as the		
	Nebular and Protoplanet Hypotheses.		
3.	Demonstrate an understanding regarding	Exam, class discussion	Lecture, assigned reading
	modern methods of data collection in		
	space.		
4.	Demonstrate a knowledge of lunar	Exam, class discussion	Lecture, assigned reading
	processes and characteristics of the		
	earth's moon.		

VIII. Demonstrate an understanding of the history of the earth as understood through the pooling of information from various subfields in historical geology, such as paleontology, stratigraphy, and paleoecology.

	Related Skills	Evaluation Method(s)	Teaching Strategy
1.	Describe the general geologic record as	Exam, class discussion	Lecture, assigned reading.,
	we know it from the beginning of the		video, Power Point
	earth to the present, utilizing eras,		
	periods, and epochs as portrayed by the		
	geologic time scale.		
2.	Specify major events of continental	Exam, class discussion	Lecture, assigned reading
	movement, collision, and separation by		Power Point
	geologic period.		
3.	Specify major episodes of orogenesis by	Exam, class discussion	Lecture, assigned reading
	geologic period.		Power Point
4.	Specify major episodes of transgression	Exam, class discussion	Lecture, assigned reading,
	and regression, particularly in North		video, Power Point
	America, by geologic time period.		
5.	Trace the origin and development of life	Exam, class discussion	Lecture, assigned reading,
	on earth from earliest life forms to the		video, Power Point
	present.		